博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
LightOJ 1245 - Harmonic Number (II) (找规律)
阅读量:5737 次
发布时间:2019-06-18

本文共 1863 字,大约阅读时间需要 6 分钟。

1245 - Harmonic Number (II)
 
Time Limit: 3 second(s) Memory Limit: 32 MB

I was trying to solve problem '1234 - Harmonic Number', I wrote the following code

long long H( int n ) {

    long long res = 0;
    for( int i = 1; i <= n; i++ )
        res = res + n / i;
    return res;
}

Yes, my error was that I was using the integer divisions only. However, you are given n, you have to find H(n) as in my code.

Input

Input starts with an integer T (≤ 1000), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n < 231).

Output

For each case, print the case number and H(n) calculated by the code.

Sample Input

Output for Sample Input

11

1

2

3

4

5

6

7

8

9

10

2147483647

Case 1: 1

Case 2: 3

Case 3: 5

Case 4: 8

Case 5: 10

Case 6: 14

Case 7: 16

Case 8: 20

Case 9: 23

Case 10: 27

Case 11: 46475828386

 

题目大意:
就是根据这个代码:
long long H( int n ) {    long long res = 0;    for( int i = 1; i <= n; i++ )        res = res + n / i;    return res;}
我们要求的就是H(n);
解题思路:
首先我们观察一下数据范围,2^31次方有点大,暴力会超时,所以我们看看有没有啥规律,假设 tmp 是 n/i 的值,当n == 10的时候(取具体值)
当 tmp = 1 时,个数 是10/1 - 10/2 == 5个
当 tmp = 2 时,个数 是10/2 - 10/3 == 2个
当 tmp = 3 时,个数 是10/3 - 10/4 == 1个
…………
当 tmp = 10时,个数是10/10 - 10/11 == 1个
所以我们发现有个规律了,当tmp == i 的时候,我们要求的个数就是 10/i - 10/(i+1),然后我们前1 — sqrt(n)个数的数值还是比较大的,但是数据范围变小了
暴力可以求出来,剩下的 sqrt(n)+1 — n个数中 数据范围还是比较大,但是 n/i 的数据范围介于 1 - sqrt(n)之间,所以用我们找出的规律可以求出来,我们只需要
两个for循环就搞定了,时间复杂度 O(sqrt(n)),完全可以,剩下的就是编写程序了
上代码:
#include 
#include
using namespace std;typedef long long LL;int main(){ int T; LL n; cin>>T; for(int cas=1; cas<=T; cas++) { cin>>n; int m = sqrt(n); LL ret = 0; for(int i=1; i<=m; i++) ret += n/i; for(int i=1; i<=m; i++) ret += (n/i - n/(i+1))*i; if(m == n/m) ret -= m; cout<<"Case "<
<<": "<
<

转载地址:http://zewzx.baihongyu.com/

你可能感兴趣的文章
灵活运用 SQL SERVER FOR XML PATH
查看>>
es 加磁盘扩容
查看>>
linux 参数内核
查看>>
使用Azcopy在Azure上进行HBase的冷热备份还原
查看>>
计组_定点数一位乘_布斯公式
查看>>
linux下使用过的命令总结(未整理完)
查看>>
ES6的一些文章
查看>>
LeetCode 198, 213 House Robber
查看>>
New Year Permutation(Floyd+并查集)
查看>>
Qt编写输入法V2018超级终结版
查看>>
<context:component-scan>详解
查看>>
DS博客作业07--查找
查看>>
[JOI2017] サッカー (Soccer)
查看>>
Git 方法
查看>>
[Python] numpy.nonzero
查看>>
2016-11-29
查看>>
C#反射的坑
查看>>
css3 box-shadow阴影(外阴影与外发光)讲解
查看>>
时间助理 时之助
查看>>
nginx快速安装
查看>>